Дисперсионный анализ себестоимости молока на примере предприятий орловской области

Рубакова Елена Викторовна,
студентка 3 курса специальности
«Бухгалтерский учёт, анализ и аудит»,
научный руководитель:
Яковлева Наталья Альбертовна,
к.э.н., доцент
Орловский государственный аграрный университет
Инновационная экономика: перспективы развития и совершенствования, №2 (5), 2014

В статье рассмотрен дисперсионный анализ себестоимости молока на примере предприятий Орловкой области.

Дисперсионный анализ - это метод статистической оценки надежности проявления зависимости результативного признака от одного или нескольких факторов. На основе дисперсионного анализа решаются задачи:

  1. общая оценка достоверности различия средних при группировке единиц по одному фактическому признаку или нескольким;
  2. оценка достоверности взаимодействия между 2-мя или большим числом факторов;
  3. оценка частных различий между парами средних. Статистическая оценка достоверности показателей осуществляется по выборочным данным. Следовательно, дисперсионный анализ является методом оценки выборочных характеристик связи между факторами [1].

Таблица 1. Зависимость между продуктивностью коров и себестоимостью 1 ц молока в хозяйствах Верховского, Кромского и Орловского районов

Группы хозяйств по продуктивности коров, ц/гол. Число хозяйств в группе Себестоимость 1ц молока, руб. Сумма себестоимостей 1ц молока Средняя себестоимость 1ц молока в группе
21,34 - 30,21 6 1428,1; 777,9; 883,8; 1054,2; 759,0; 1058,4 5961,4 993,6
30,21 - 41,52 5 977,3; 1097,7; 1114,4; 743,1; 409,5 4342,0 868,4
41,52 - 83,08 5 1313,4; 1298,4; 1250,0; 880,9; 773,2 5515,9 1103,2
Итого 16 x 15819,3 х

xобщ = ∑xi / n---- (1)

x = 15819,3 / 16 = 988,7 руб

За нулевую гипотезу примем то, что различия в уровнях себестоимости связаны не с изменениями продуктивности коров, а с другими случайными факторами.

Общая дисперсия характеризует вариацию себестоимости 1ц молока под влиянием всего комплекса факторов и рассчитывается по формуле:

σ2общ = ∑( xi - xобщ) (2)

σ2общ = (1428,1 - 988,7)2 + (777,9 - 988,7)2 + (883,8 - 988,7)2 + (1054,2 - 988,7)2 + (759,0 - 988,7)2 + (1058,4 - 988,7)2 + (977,3 -988,7)2 + (1097,7 - 988,7)2 + (1114,4 - 988,7)2 + (743,1 - 988,7)2 + (409,5 - 988,7)2 + (1313,4 - 988,7)2 + (1298,4 - 988,7)2 + (1250,0 -988,7)2 + (880,9 - 988,7)2 + (773,2 - 988,7)2 = 1061734,7 руб.2

Межгрупповая дисперсия характеризует меру вариации себестоимости 1ц молока под влиянием продуктивности и рассчитывается по формуле:

σ2межгр = ∑(xi - xобщ)2 * fi (3)

σ2межгр = (993,6 - 988,7)2 * 6 + (868,4 - 988,7)2 * 5 + (1103,2 -988,7)2 * 5 = 138055,8 руб.2

Внутригрупповая (остаточная) дисперсия характеризует меру вариации себестоимости 1 ц молока под влиянием прочих случайных факторов и рассчитывается по формуле:

σ2вн = ∑(xi - xi)2 (4)

σ2вн1 = (1428,1 - 993,6)2 + (777,9 - 993,6)2 + (883,8 - 993,6)2 + (1054,2 - 993,6)2 + (759,0 - 993,6)2 + (1058,4 - 993,6)2 =310281,3 руб.2

σ2вн2 = (977,3 - 868,4)2 + (1097,7 - 868,4)2 + (1114,4 - 868,4)2 + (743,1 - 868,4)2 + (409,5 - 868,4)2 = 351243,0 руб.2

σ2вн3 = (1313,4 - 1103,2)2 + (1298,4 - 1103,2)2 + (1250,0 -1103,2)2 + (880,9 - 1103,2)2 + (773,2 - 1103,2)2 = 262154,6 руб.2

σ2вн.общ = 923678,9 руб.2

Поверим правильность расчетов, по правилу сложения дисперсий:

σ2общ = σ2межгр + σ2вн

1061734,7 = 138055,8 + 923678,9 (верно)

Для каждого вида дисперсии вариации установим число степеней свободы вариации.

Для общей дисперсии:

Vобщ = п - 1 (6)

Vобщ = 16 - 1 = 15

Для межгрупповой дисперсии:

Vмежгр = т - 1 (7)

Vмежгр = 3 – 1 = 2

Для внутригрупповой (остаточной):

Vвн = п - т (8)

Vвн = 16 - 3 = 13

Рассчитаем дисперсии на одну степень свободы вариации и определим фактическое значение F - критерия Фишера.

dмежгр = σ2межгр / Vмежгр = 138055,8 / 2 = 69027,9 (9)

dвн = 923678,9 / 13= 71052,2 ё(10)

В рассматриваемом примере при числе степеней свободы для Vмежгр = 2 и Vвн = 13 Fтабл будет равно 3,8.

Фактическое значение критерия Фишера рассчитывается по формуле:

Fф = dмежгр / dвн (11)

Fф = 69027,9 / 71052,2 = 0,97

Таблица 2. Анализ дисперсий

Источники вариации Суммарная дисперсия Число степеней свободы вариации Дисперсия на одну степень свободы вариации Отношение дисперсий
Факт Табл
Межгрупповая (систематическая) 138055,8 2 69027,9 0,97 3,8
Внутригрупповая (остаточная) 923678,9 13 71052,2 x x
Общая 1061734,7 15 x x x

Поскольку фактическое значение критерия Фишера меньше табличного значения, то нулевая гипотеза о случайном характере различия групповых средних принимается. Результаты дисперсионного анализа не подтверждают надежность и существенность влияния продуктивности коров на уровень себестоимости 1 ц молока.

Список литературы:

1. Ефимова М.Р. Общая теория статистики: Учебник / М. Р. Ефимова, Е.В. Петрова, В.Н. Румянцев. - М.: ИНФРА - М, 2013. - 416 с.

2. Гончарова Н. М. Анализ государственного регулирования экономического развития аграрного сектора экономики. [Текст]: Экономика и социум: сб.статей - Орел 2014г.

Журнал Арбитражный управляющий
Скачать ФинЭкАнализ
Программа для проведения финансового анализа по данным бухгалтеской отчетности
Скачать ФинЭкАнализ
Провести Финансовый анализ Онлайн
Онлайн сервис для проведения финансового анализа по данным бухгалтеской отчетности
Попробовать ФинЭкАнализ